

Beneath the Sand: Life's a Beach

Dr. Richard Whitman, Chief Science Officer

Let's go beachcombing!

Before we start exploring, let's get a lay of the land — or rather, the sand. As we walk barefoot toward the water's edge, the first thing we notice is the temperature change.

The dry sand up near the dunes can be scorching, so we instinctively hurry to the shoreline, where the sand is cool, moist and alive with activity. That hot, dry backshore is inhospitable to most creatures.

Only a few well-adapted organisms — like ghost crabs, sand crabs, tiger beetles, no-see-ums, and beach flies — can tolerate the heat. But as we move closer to the water, life flourishes. Each stretch of sand forms a distinct biological and geological zone. Let's explore these dynamic beach habitats together.

THE SPLASH ZONE

At the wave line lies the splash zone, where incoming breakers crash and create a shallow trough.

The size of that trough depends on wave height — bigger waves carve deeper, coarser, sandy pits filled with gravel and shell. This is a tough neighborhood to call home. The bottom is constantly shifting, and turbulence is high. Yet, specialists thrive here: tiny crustaceans, snails, and burrowing worms cling to life on the unstable bottom. Small fish hover just offshore, waiting for waves to dislodge prey, and occasionally a bold blue crab ventures into the surge for a quick meal.

THE SWASH ZONE

Just shoreward of the splash zone lies the swash zone — the narrow, ever-moving strip where waves rush up and retreat.

It's a busy corridor and a favorite feeding ground for shorebirds. Look for sanderlings, willets, plovers, black skimmers, terns, gulls, and the striking American oystercatcher. Each species has a different strategy. Some dart forward as waves retreat, snatching exposed invertebrates. Others wait for the backwash, when small animals and organic debris slide seaward again.

Small fish such as menhaden, spot, pinfish, croakers, and juveniles linger just beyond the breakers, taking advantage of the same bounty. Larger predators patrol slightly deeper waters, making the swash zone one of the beach's most active food webs.

The swash may look chaotic, but it's ecologically rich. Although constantly disturbed by tides and storms, it offers abundant food. The animals that inhabit this zone are called the psammon, from the Greek word for sand. Waves and currents continually deposit algae, detritus, and stranded organisms — forming a buffet line for countless small creatures. You can see their leftovers along the strand line or wrack line, where seaweed and debris accumulate. It's a feasting area for crustaceans (mole crabs, aka sandfleas; sand crabs; mysid shrimp), worms, and mollusks such as coquina clams. Just below the surface, a hidden world of microscopic life thrives — organisms feeding on what larger animals miss.

THE BERM

At the landward edge of the swash lies the berm — a low mound of sand marking the average high reach of the waves. The surface may appear barren, but beneath it lies a fascinating miniature world.

I've spent time studying these zones (e.g. dissertation, early publications), and I'm still amazed by their complexity. Life here resembles that of cave ecosystems: dark, confined, and dependent on imported food. The inhabitants are tiny — often smaller than a grain of sand — and live in the minute spaces between sand particles. Despite their size, it's a diverse community of herbivores, carnivores and decomposers. Many are colorless and tube-shaped to squeeze through tight spaces.

This hidden biome is made up of critters with strange sounding names such as flatworms, hairybacks, bristleworms, water bears, sideswimmers, and mud dragons. You might miss them without a microscope, but they play a vital role in recycling nutrients and maintaining the beach's ecological balance.

FROM TINY CREATURES TO BIG QUESTIONS

Years ago, my research shifted from these microscopic sand dwellers to fecal indicator bacteria — the bacteria used to assess swimmingbeach water quality.

Naturally, I started by looking under the berm — had a hunch. Beneath the berm it's warm, dark, and adequately oxygenated, with a steady food supply — conditions not unlike our own gut! I found that these bacteria concentrate in the moist sands beneath the berm. Those bacteria plus plenty by bird droppings get resuspended by incoming tides or from onshore sea breeze and sometimes close beaches. On our Gulf beaches, constant wave energy quickly dilutes them, so closures are rare. But in sheltered bays and harbors — like those around Charlotte Harbor — bacteria can accumulate, especially after rain events or algal wrack buildup. It's important to remember: FIB themselves aren't dangerous, but their presence signals a higher risk of other pathogens.

ENVIRONMENTAL INDICATORS BENEATH OUR FEET

The psammon — the community of interstitial sand dwellers — are more than curiosities; they're excellent environmental indicators.

Oxygen levels in the tiny spaces between sand grains are naturally low; pollution or excess organic matter can deplete that oxygen entirely, wiping out healthy communities and favoring bacteria associated with contamination. Fine sediments and debris can clog pore spaces, reducing habitat for these animals and altering the beach's natural filtration system. Healthy, well-aerated sand supports vibrant psammon communities that, in turn, sustain larger food webs from worms to birds — and fishes too.

HIDDEN WORLDS OF THE BEACH

As we comb the shore, we discover life at every scale — visible macrofauna like crabs and clams, barely visible meiofauna, and microscopic bacteria.

Each occupies its own narrow habitat band, adapted to unique and harsh physical conditions. The beach is a tension zone between land and sea, shaped by splash, swash, strand line, berm, and backshore zones. What lies beneath our feet is every bit as fascinating as what swims offshore. These microhabitats represent one of the last great frontiers of ecology— waiting for curious beachcombers (and maybe a microscope) to explore.

Next time you stroll along the beach, take a closer look. Life's a beach — layered, hidden, and full of surprises.

November 13, 2025

Dr. Richard Whitman is Chief Science Officer with Heal Our Harbor, Inc. (HOH), and a retired Research Manager and Aquatic Ecologist. HOH is a nonprofit organization providing scientific information, education and perspective on the environmental health of the Charlotte Harbor watershed. Contact him: Richard.Whitman@HealOurHarbor.org, and visit HOH on Facebook https://bit.ly/HOHfla, or on the web at www.healourharbor.org.